检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《高校应用数学学报(A辑)》2014年第3期288-294,共7页Applied Mathematics A Journal of Chinese Universities(Ser.A)
基 金:国家自然科学基金(11201273;61202365;61202017);山西省青年科技基金(2011021004);山西省回国人员留学基金(2013-017)
摘 要:多部竞赛图D中弧x_1x_2的一条(l-1)一外路是指起始于x_1x_2的长为l-1的路x_1x_2…x_1,其中要么x_1与x_1同部,要么x_1控制x_1.特别地,当l=|V(D)|且x_1控制x_1时,x_1x_2…x_lx_1是一个通过弧x_1x_2的Hamilton.Guo(Discrete Appl.Math.95(1999)273-277)证明了一个正则c-部(c≥3)竞赛图中的每条弧都有一个(k-1)-外路,其中k∈{3,4,…,c}.作为一个推广,该文证明了一个正则c-部(c≥5)竞赛图中的每条弧都有一个(k-1)-外路,其中k∈{3,4,…,|V(D)|}.进一步,使用路收缩技巧,下面一个结果也被证明:D是一个正则c-部(c≥8)竞赛图,且每个部集包含两个顶点,则D的每条弧被包含在一个Hamilton圈中.这个结果部分地支持了Volkmann和Yeo(Discrete Math.281(2004)267-276)提出的猜想:正则多部竞赛图的每条孤都包含在一个Hamilton圈中.An (l - 1)-outpath of an arc xtx1 in a multipartite tournament is a path x1x2… xl of length l - 1 starting with xtx1, such that either x1 and x1 are in the same partite set or x1 dominates x1. Specially,x1x2...xlx1 is a Hamilton cycle when l = |V(D)| and x1 dominates x1. Guo (Discrete Appl Math 95 (1999) 273-277) proved that every arc of a regular c-partite tournament with c 〉 3 has a (k - 1)-outpath for each k ∈ {3, 4,... , c}. As a generalization, this paper proves that every arc in a regular c-partite tournament with c ≥ 5 has a (k - 1)-outpath for each k ∈ {3,4,... , |V(D)|}. Furthermore, using the method of path-contracting, the paper also proves the following result: Let D be a regular c-partite tournament. If c ≥ 8 and there are two vertices in every partite set, then each arc in D is contained in a Hamilton cycle. This result gives a partial support to the conjecture posed by Volkmann and Yeo (Discrete Math 281 (2004) 267-276) that each arc of a regular multipartite tournament is contained in a Hamilton cycle.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13