联图W_4+C_n的交叉数  被引量:1

On crossing numbers of join of W_4+C_n

在线阅读下载全文

作  者:岳为君 黄元秋[1] 欧阳章东[2] 

机构地区:[1]湖南师范大学数学与计算机科学学院,长沙410081 [2]湖南第一师范学院数学系,长沙410205

出  处:《计算机工程与应用》2014年第18期79-84,108,共7页Computer Engineering and Applications

基  金:国家自然科学基金(No.11371133;No.11301169)

摘  要:联图G+H表示将G中每个点与H中的每个点连边得到的图。在Klesc M.给出联图W3+Cn的交叉数的基础上,应用反证法和排除法得到了联图W4+Cn的交叉数为Z(5,n) + n +|n/2|+ 4(n≥3)),并在Zarankiewicz猜想成立的前提下,根据证明,提出对Wm+Cn的交叉数的一个猜想:cr(Wm+Cn)=Z(m+1,n)+|m/2||m-1/2||n/2|+|m/2|+|n/2|+2,n≥3。其中Z(m,n)=|m/2||m-1/2||n/2||n-1/2|,m,n为非负整数。By connecting each vertex of a graph G to each vertex of a graph H, a join graph, denoted by G+H, is obtained. In this paper, based on the crossing number of W3 + Cn obtained by Klesc M., it gets that the crossing number of W4 + C is Z(5, n)+ n + [n/2] + 4(n ≥ 3) by reduction to absurdity and elimination method, and gives a conjecture of the crossing number of W + C within the conjecture of Zarankiewicz,cr(Wm+Cm)=Z(m+1,n)+[m/2][m-1/2][n/2]+[m/2]+[n/2]+2,n≥3.in which Z(m , n) =[m/2][m-1/2][n/2][n-1/2]、m,n is nonnegative integer.

关 键 词:画法 交叉数 联图  

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象