云模型在测井曲线分层中的应用  

Application of Cloud Model in Logging Curve Hierarchical

在线阅读下载全文

作  者:张亚光[1] 李玉龙[1] 

机构地区:[1]东北石油大学计算机与信息技术学院,大庆163318

出  处:《计算机与数字工程》2014年第9期1613-1616,共4页Computer & Digital Engineering

摘  要:针对由模糊信息导致测井曲线人工分层的不准确,提出了一种基于云模型的测井曲线自动分层方法。而云模型能同时体现概念的随机性和模糊性,利用云变换从测井曲线中提取定性概念,然后对提取的概念进行概念跃升,使得算法输出的概念层次更符合实际。实验表明,该方法能够较准确地提取和表征定性概念,所提取的概念中心与传统测井曲线分层方法得到的概念中心吻合较好,验证了算法的有效性,提高了测井曲线分层的准确性。For the problem that the artificial layering of well logging curves is not accurate caused by the fuzzy information, an automatical layering method of well logging curves based on cloud model is proposed. Cloud model can describe the concepts with randomness and fuzziness at the same time. Cloud transformation is used to extract qualitative concepts from well logging curves and makes the concept zooming of the extracted concepts, making the output concept hierarchy more close to reality. Experimental results demonstrate that this method can represent and extract qualitative concepts exactly. The proposed method is in good agreement with that obtained by layering method of conventional well logging curves. It verifies the effectiveness of the algorithm and improves the layering accuracy of well logging curves.

关 键 词:测井曲线分层 云模型 云变换 概念跃升 

分 类 号:TP315.69[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象