检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长沙理工大学,湖南长沙410114
出 处:《现代电子技术》2014年第18期41-43,47,共4页Modern Electronics Technique
摘 要:针对传统的ART2神经网络中对于主观设置的警戒参数以及识别分类过程中产生模式漂移的问题,提出基于改进算法的ART2神经网络模型,用于解决分析模式识别问题。通过自组织,加权,迭代等过程推导合理的警戒参数用于聚类运算,通过对ART2神经网络的权值训练方面进行修正,减缓学习速率,降低模式漂移速度,近一步对聚类对象进行合理分类。实验结果证明,该方法是可行的和有效的。Aiming at the problems of setting vigilance parameter and pattern drift produced in the process of classification identification of the traditional ART2 neural network, a new ART2 neural network model based on modified algorithm is presen- ted in this article to solve problems concerning analysis of pattern identification. Reasonable vigilance parameter needed by clus- tering is deduced through the processing of self-organization, weighting and iteration. In order to conduct reasonable classifica- tion of clustering objects, the measures of slowing learning rate which can be realized by modifying the weight training of ART2 neural network to reduce the speed of pattern drifting should be taken. The experimental results have proved that the new model is of high validity and feasibility.
分 类 号:TN911-34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117