关于一类半环的研究  

On a class of semirings

在线阅读下载全文

作  者:杨文玲[1] 任苗苗[1] 

机构地区:[1]西北大学数学系,西安710127

出  处:《黑龙江大学自然科学学报》2014年第4期464-469,共6页Journal of Natural Science of Heilongjiang University

基  金:陕西省自然科学专项基金资助项目(2011JQ1017);西北大学科学研究基金资助项目(09NC25)

摘  要:借助半环的同态定理和乘法半群的格林关系,引入并研究乘法半群满足xn+1≈x的半环上由格林关系所确定的开同余,证明由开同余出发得到的半环类都是簇。借助闭算子的定义,对乘法半群为纯正密码群且满足xn+1≈x的半环所作成的半环簇[xn+1≈x]∩OBG的子簇格进行探讨。研究半环簇[xn+1≈x]∩OBG的一些子簇。Congruence openings determined by Green's relations of a semiring whose multiplicative semigroup satisfies x^n + 1≈x is introduced and studied by using semiring the homomorphisms theorem and Green's relations on the multiplicative semigroup of a semiring. Firstly,it is shown that any classe of semirings which are obtained by the congruence openings is variety. Secondly,it is investigated that the lattice of all subvarieties of the variety [x^n + 1≈x]∩OBG of semirings whose multiplicative semigroups are orthocryptogroups and satisfy by the definition of closure operator. Finally,some subvarieties of the semiring variety [x^n + 1≈x]∩OBG are studied.

关 键 词:半环 格林关系 开同余  闭算子 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象