检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院大学计算机与控制学院,北京100190 [2]中国科学院声学研究所,北京100191 [3]生物信息学研究所新加坡科技研究局,新加坡138632 [4]中国科学院心理研究所,北京100101
出 处:《哈尔滨工业大学学报》2014年第9期100-104,110,共6页Journal of Harbin Institute of Technology
基 金:国家自然科学基金资助项目(61070115)
摘 要:随着社交媒体的迅速发展,针对网络信息挖掘的研究成为互联网领域备受关注的研究热点之一.传统的单任务回归对各个任务分别建模,在多变量预测的场合中,无法合理利用变量之间的共享信息.因此,本文通过多任务回归网络挖掘方法,分析社交媒体用户人格和网络行为的关联模式.实验通过在线被试邀请,采集了335个人人网用户样本和563个新浪微博用户样本.采用多任务回归的算法,预测精度可达87%以上.实验结果表明多任务回归对多变量建模效果要优于单任务学习算法.With the development of Social Media,web mining analysis has been regarded as one of hot research topics.Traditional single task regression builds models for each task,which ignores the sharing information among tasks in the occasion of multi-variable prediction.Therefore,this paper used multi-task regression mining method,and managed to analyze the pattern between user ’s personality and network behavior.This study collected a sample set of 335 RenRen users and 563 Weibo users through online test invitation.Using multi-task regression,the final prediction accuracy is 87% or more.The result means that multi-task regression works better then single task regression for multi-variable modeling.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222