Low-intensity aerobic exercise training attenuates airway inflammation and remodeling in a rat model of steroid-resistant asthma  被引量:4

Low-intensity aerobic exercise training attenuates airway inflammation and remodeling in a rat model of steroid-resistant asthma

在线阅读下载全文

作  者:Qin Qingwu Chen Xi Feng Juntao Qin Ling Hu Chengping 

机构地区:[1]Department of Respiratory Medicine, Xiangya Hospital, Central South University, National Clincial Research Center for Respirator3[ Disease, Changsha, Hunan 410008, China [2]Bronchial Asthma Research Center of Hunan Province, Changsha, Hunan 410008, China

出  处:《Chinese Medical Journal》2014年第17期3058-3064,共7页中华医学杂志(英文版)

基  金:This study was supported by grants from the National Natural Science Foundation of China (No. 81070026), the Key Project of Hunan Provincial Science and Technology Department (No. 2012FJ4375), and the Open Innovation Platform of Hunan College (No. 10K076).

摘  要:Background Aerobic exercise can improve symptoms,reduce airway inflammation,and even ameliorate airway remodeling in asthmatic animals and patients.However,previous studies have focused mainly on the effect of aerobic exercise on steroid-sensitive asthma (SSA).The goals of this study were to determine the effect of low-intensity aerobic exercise training on airway hyperresponsiveness,inflammation,and remodeling in a rat model of steroid-resistant asthma (SRA) and to identify the potential mechanisms underlying these effects.Methods Endotoxin-free ovalbumin with or without lipopolysaccharide were applied to establish rat models of SRA and SSA,respectively.Airway hyperresponsiveness,inflammation,remodeling,expression of interleukin (IL)-25,IL-33,thymic stromal lymphopoietin (TSLP),high mobility group box-1 (HMGB1),and IL-17 in bronchoalveolar lavage fluid (BALF),and the role of dexamethasone (DXM) were compared between these two asthmatic rat models.The effect of low-intensity aerobic exercise training and anti-HMGB1 treatment on airway hyperresponsiveness,inflammation,and remodeling in SRA rats also was evaluated.Results SRA rats developed neutrophil-dominated airway inflammation ((29.5±4.1)% of the total cell numbers in BALF),whereas SSA rats developed eosinophil-dominated airway inflammation ((24.0±6.1)% of the total cell numbers in BALF).Compared with SSA rats,SRA rats had more severe airway hyperresponsiveness,lower levels of IL-25 ((33.6±10.3) vs.(104.8±24.9) pg/ml),IL-33 ((87.5±25.0) vs.(226.6±40.7) pg/ml),and TSLP ((1 933.2±899.5) vs.(7 224.0±992.1) pg/ml),and higher levels of HMGB1 ((21.2±4.5) vs.(5.4±1.6) ng/ml) and IL-17 ((780.5±261.7) vs.(291.4±76.4) pg/ml) in BALF (all P <0.05).However,there was no significant difference in goblet cell hyperplasia,subepithelial collagen thickness,and airway smooth muscle remodeling between the two groups.Compared with control SSA rats,airway hypBackground Aerobic exercise can improve symptoms,reduce airway inflammation,and even ameliorate airway remodeling in asthmatic animals and patients.However,previous studies have focused mainly on the effect of aerobic exercise on steroid-sensitive asthma (SSA).The goals of this study were to determine the effect of low-intensity aerobic exercise training on airway hyperresponsiveness,inflammation,and remodeling in a rat model of steroid-resistant asthma (SRA) and to identify the potential mechanisms underlying these effects.Methods Endotoxin-free ovalbumin with or without lipopolysaccharide were applied to establish rat models of SRA and SSA,respectively.Airway hyperresponsiveness,inflammation,remodeling,expression of interleukin (IL)-25,IL-33,thymic stromal lymphopoietin (TSLP),high mobility group box-1 (HMGB1),and IL-17 in bronchoalveolar lavage fluid (BALF),and the role of dexamethasone (DXM) were compared between these two asthmatic rat models.The effect of low-intensity aerobic exercise training and anti-HMGB1 treatment on airway hyperresponsiveness,inflammation,and remodeling in SRA rats also was evaluated.Results SRA rats developed neutrophil-dominated airway inflammation ((29.5±4.1)% of the total cell numbers in BALF),whereas SSA rats developed eosinophil-dominated airway inflammation ((24.0±6.1)% of the total cell numbers in BALF).Compared with SSA rats,SRA rats had more severe airway hyperresponsiveness,lower levels of IL-25 ((33.6±10.3) vs.(104.8±24.9) pg/ml),IL-33 ((87.5±25.0) vs.(226.6±40.7) pg/ml),and TSLP ((1 933.2±899.5) vs.(7 224.0±992.1) pg/ml),and higher levels of HMGB1 ((21.2±4.5) vs.(5.4±1.6) ng/ml) and IL-17 ((780.5±261.7) vs.(291.4±76.4) pg/ml) in BALF (all P <0.05).However,there was no significant difference in goblet cell hyperplasia,subepithelial collagen thickness,and airway smooth muscle remodeling between the two groups.Compared with control SSA rats,airway hyp

关 键 词:aerobic exercise INFLAMMATION airway remodeling steroid-resistant asthma high mobility group box-1 

分 类 号:R562.25[医药卫生—呼吸系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象