机构地区:[1]Institution of Sports Medicine, Peking University Third Hospital,Beijing 100191, China
出 处:《Chinese Medical Journal》2014年第18期3265-3271,共7页中华医学杂志(英文版)
基 金:This study was supported by grants from the National Natural Science Foundation of China (No. 30270636 and No. 30671015).
摘 要:Background Intense exercise can cause injury and apoptosis, but few studies have reported its effect on the central nervous system (CNS). The initial reason for hippocampus injury is the excitotoxicity of glutamate and calcium overload. Intracellular free Ca2+ ([Ca2+]i) overload may trigger the apoptosis pathway and neuron damage. The aim of this study was to investigate whether intense exercise could cause hippocampus apoptosis and neuron damage and then to determine which pathway was activated by this apoptosis. Methods We used one bout of swimming exhaustion rats as models. Intracellular [Ca2~]i was measured to estimate the calcium overload by Fura-2/AM immediately after exhaustion; glial fibrillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were performed for estimating astrocyte activation and synapse plasticity 24 hours after exhaustion. Apoptosis cells were displayed using dUTP nick end labelling (TUNEL) stain; endoplasmic reticulum (ER) stress-induced apoptosis pathway and mitochondrial apoptosis pathway were synchronously detected by Western blotting. Results An increasing level of intracellular [Ca2+]i (P 〈0.01) was found in the hippocampus immediately after exhaustion. GFAP and SYP immunofluorescence showed that the astrocytes are activated, and the synapse plasticity collapsed significantly 24 hours after exhaustion. TUNEL stain showed that the number of apoptosis cells were notably raised (P 〈0.01); Western blotting of the apoptosis pathway showed increasing levels of caspase-3 cleavage (P 〈0.01), Bax (P 〈0.01), caspase-12 cleavage (P 〈0.01), C/EBP-homologous protein (CHOP) (P 〈0.01), and phospho-Junamino- terminal kinases (p-JNK; P 〈0.01) and decreasing level of Bcl-2 (P 〈0.01). Our results proved that exhaustion can induce hippocampus injury and apoptosis by [Ca2+]i overload, with collapsed synaptic plasticity as the injury pattern and ER stress-induced apoptosis as the activated pathway. ConclBackground Intense exercise can cause injury and apoptosis, but few studies have reported its effect on the central nervous system (CNS). The initial reason for hippocampus injury is the excitotoxicity of glutamate and calcium overload. Intracellular free Ca2+ ([Ca2+]i) overload may trigger the apoptosis pathway and neuron damage. The aim of this study was to investigate whether intense exercise could cause hippocampus apoptosis and neuron damage and then to determine which pathway was activated by this apoptosis. Methods We used one bout of swimming exhaustion rats as models. Intracellular [Ca2~]i was measured to estimate the calcium overload by Fura-2/AM immediately after exhaustion; glial fibrillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were performed for estimating astrocyte activation and synapse plasticity 24 hours after exhaustion. Apoptosis cells were displayed using dUTP nick end labelling (TUNEL) stain; endoplasmic reticulum (ER) stress-induced apoptosis pathway and mitochondrial apoptosis pathway were synchronously detected by Western blotting. Results An increasing level of intracellular [Ca2+]i (P 〈0.01) was found in the hippocampus immediately after exhaustion. GFAP and SYP immunofluorescence showed that the astrocytes are activated, and the synapse plasticity collapsed significantly 24 hours after exhaustion. TUNEL stain showed that the number of apoptosis cells were notably raised (P 〈0.01); Western blotting of the apoptosis pathway showed increasing levels of caspase-3 cleavage (P 〈0.01), Bax (P 〈0.01), caspase-12 cleavage (P 〈0.01), C/EBP-homologous protein (CHOP) (P 〈0.01), and phospho-Junamino- terminal kinases (p-JNK; P 〈0.01) and decreasing level of Bcl-2 (P 〈0.01). Our results proved that exhaustion can induce hippocampus injury and apoptosis by [Ca2+]i overload, with collapsed synaptic plasticity as the injury pattern and ER stress-induced apoptosis as the activated pathway. Concl
关 键 词:intense exercise EXHAUSTION hippocampus endoplasmic reticulum stress-induced apoptosis synapse plasticity astrocytes activation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...