检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学希望学院基础部,四川南充637002 [2]四川交通职业技术学院计算机工程系,四川成都611130
出 处:《计算机工程与设计》2014年第10期3563-3567,共5页Computer Engineering and Design
摘 要:为有效解决粗糙理论在边界域不能够变化因而无法适应图像信息复杂空间的相关性和不确定性的问题,提出基于变精度分层粒度模型的图像分割算法。以知识粒度为基础,引入分类误差精度,构造出具有不同置信阈值和分类质量的图像粒度结构;根据分割精度要求,确定单元粒度层,在该粒度层分析不同灰度级的重要度,进行相应的灰度核计算;通过差异度指数定义等价关系,实现相似区域合并,完成图像分割。分割实验结果表明,该算法降低了图像信息和时间的复杂度,提高了图像分割的并行性,为知识粒度在图像处理中的应用提供了新思路。To solve the problem that the rough theory in the edge boundaries is not able to adapt the correlation of image infor-mation complex space and the defect of uncertainty ,a new image segmentation algorithm was proposed based on the variable pre-cision hierarchy granular model .Firstly ,the classifying error precision was introduced into the knowledge granulation ,and the granular structure of the image with various levels of confidence and the classification quality was constructed .Next ,on the basis of the requirement of the segmentation precision ,the unit granular layer was chosen and the importance of different grey levels on the layer was analyzed further .Finally ,the equivalent relations defined by using the dissimilarities were used to implement the combination of the similar regions and the image segmentation was accomplished .The algorithm was applied to image seg-mentation tests .The experimental results indicate that it not only improves the parallel computation of the image and reduces the complexity of the space and time ,but also provides new thoughts on applying the knowledge granulation to the image process .
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222