基于多尺度局部区域能量最小化算法的图像分割  

Algorithm of minimizing multi-scale local region energy for image segmentation

在线阅读下载全文

作  者:刘光辉[1] 任庆昌[1] 孟月波[1] 徐胜军[1] 

机构地区:[1]西安建筑科技大学信息与控制工程学院,陕西西安710055

出  处:《西安建筑科技大学学报(自然科学版)》2014年第4期588-592,共5页Journal of Xi'an University of Architecture & Technology(Natural Science Edition)

基  金:陕西省自然科学基金项目(2012JM8026;2013JM8030);陕西省教育厅专项基金项目(2013JK1091);陕西省社会发展攻关项目(2013K13-04-08);西安建筑科技大学基础研究基金项目(JC1415)

摘  要:常规多尺度MRF模型中固定的四叉树结构造成图像分割结果中常产生块现象和非连续边缘.为解决这一问题,提出了一种新的多尺度MRF模型,并建立了基于区域消息传递的置信度传播(BP)算法,通过BP算法在多尺度MRF模型中对区域消息进行传递;在层间,从粗糙层向精细层进行消息传递时,利用提出的MRF模型父子区域之间的重叠,有效初始化了精细层消息的初值,避免了多尺度MRF模型层间误分类的传递;最后基于MPM准则对分割结果进行估计.实验结果表明提出的算法不仅得到了更准确的图像分割结果,而且具有较快的分割速度.An efficient local region belief propagation (BP) algorithm based on multi-scale Markov random fields (MRF) model is proposed to solve the problem that the fixed quadtree structures of traditional hierarchical Markov random fields always results in blocky artifacts and discontinuous edges in image segmentation. The proposed algorithm builds different scales of local region messages, and the messages are propagated on the proposed MRF model through belief propagation (BP) algorithm. The proposed algorithm utilities the overlapping between parent and child regions efficiently to initialize the child region messages when passing messages from the coarser scale to the finer scale, thus avoiding the transfer of misclassification between scales in multi-scale MRF model. Finally segmentation results are estimated based on the maximized posteriori marginal (MPM) criterion. Experimental results on a wide variety of images have verified the effectiveness of the proposed algorithm.

关 键 词:图像分割 多尺度马尔可夫随机场 置信度传播算法 最大后验边缘准则 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象