检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜迎欣 曹小兵[2] 李琛[2] 王玉恒[3] 马廉洁[2]
机构地区:[1]秦皇岛市引青管理局,河北秦皇岛066001 [2]东北大学秦皇岛分校控制工程学院,河北秦皇岛066004 [3]东北大学秦皇岛分校资源与材料学院,河北秦皇岛066004
出 处:《水电能源科学》2014年第9期15-18,共4页Water Resources and Power
基 金:河北省高校科技项目(Z2013017)
摘 要:针对采用传统的时间序列等方法模拟入库径流量精度不高的问题,基于最小二乘向量机(LS-SVM)与径向基神经网络(RBF)的相似性结构,利用最小二乘向量机优化径向基神经网络结构,构建了LS-SVM-RBF网络模型,模拟研究了洋河水库入库径流量的变化趋势,并选取BP网络模型和RBF网络模型作为对比模型,以决定系数、合格率、平均相对误差、最大相对误差、均方根绝对误差5个统计学参量作为模型性能评价指标。结果表明,LS-SVM-RBF模型的泛化能力与精度较BP网络模型和RBF网络模型均有较大提高,其决定系数和合格率均为最高,而平均相对误差、最大相对误差、均方根绝对误差三个指标均为最低,检验结果与训练效果相吻合,可见LS-SVM-RBF网络模型误差最小,且具有较高的可靠性。The runoff simulation accuracy was not high with the traditional time series methods.Based on the similarity structure between least square support vector machine(LS-SVM)and radial basis function neural network(RBF),the structure of radial basis function neural network was optimized through least squares support vector machine.And then LS-SVM-RBF network model was built.The inflow runoff trend of Yanghe Reservoir was simulated.The BP and RBF network model was selected for comparison.The evaluation index of the model performance were selected from statistical parameters such as coefficient of determination,pass rate,average relative error,maximum relative error and absolute error of root mean square.The results show that the generalization ability and accuracy of LS-SVM-RBF model were better than that of BP and RBF model;its coefficient of determination and pass rate were the highest;the average relative error,maximum relative error and absolute error of root mean square were the lowest;test results were consistent with training;the error of LS-SVM-RBF network model was the smallest and its reliability was high.
关 键 词:最小二乘向量机 径向基神经网络 LS-SVM-RBF网络模型 入库径流量 洋河水库
分 类 号:TV121.2[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229