检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qin-Yi Li Qun Chen Xing Zhang
出 处:《Chinese Science Bulletin》2014年第28期3686-3690,共5页
基 金:supported by the National Natural Science Foundation of China (51006060, 51136001);the Tsinghua University Initiative Scientific Research Program
摘 要:Prediction of CO2 leakage into biosphere is very important for risk assessment in geological carbon storage projects. Underground CO2 can be transported into biosphere through short term leakage due to fractures of wellbores or cap rocks, which has been extensively investigated, and long term leakage due to diffusion, which has few relevant studies. This paper presents a diffusive model for CO2 gradual leakage into biosphere during a long period after CO2 injection. First, the paper describes a general diffusive model with long term secondary trapping effects for CO2 fluxes from underground into biosphere. Secondly, a simplified one-dimensional model is presented and solved for the CO2 concentrations in groundwater. The results show that the groundwater CO2 concentration will reach the maximum value at about 50 th year after CO2 injection and then slowly decrease due to secondary trapping effects.Moreover, the partition coefficient is the dominant parameter for predicting the groundwater CO2 concentration while the convective mass transfer coefficient plays an insignificant role.Prediction of CO2 leakage into biosphere is very important for risk assessment in geological carbon storage projects. Underground CO2 can be transported into bio- sphere through short term leakage due to fractures of wellbores or cap rocks, which has been extensively investi- gated, and long term leakage due to diffusion, which has few relevant studies. This paper presents a diffusive model for CO2 gradual leakage into biosphere during a long period after CO2 injection. First, the paper describes a general dif- fusive model with long term secondary trapping effects for C02 fluxes from underground into biosphere. Secondly, a simplified one-dimensional model is presented and solved for the CO2 concentrations in groundwater. The results show that the groundwater CO2 concentration will reach the maximum value at about 50th year after CO2 injection and then slowly decrease due to secondary trapping effects. Moreover, the partition coefficient is the dominant parameter for predicting the groundwater CO2 concentration while the convective mass transfer coefficient plays an insignificant role.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3