检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学,成都610031
出 处:《中国机械工程》2014年第18期2473-2477,共5页China Mechanical Engineering
基 金:中央高校基本科研业务费专项资金资助项目(SWJ-TU12CX039)
摘 要:针对刀具的早期故障监测中因存在强烈的背景噪声而难以提取故障特征的问题,提出了基于二次采样随机共振消噪和B样条神经网络智能识别的故障诊断方法。首先利用在随机共振过程中,噪声增强振动信号的信噪比特性,将刀具振动信号进行随机共振输出,提取有效特征,再输入到B样条神经网络进行智能识别,进而获得刀具的磨损值。同时,为了得到与输入信号最佳匹配的随机共振参数,提出了基于遗传算法的多参数同步优化的自适应随机共振算法,克服了传统随机共振系统只实现单参数优化的缺点。实验结果表明,该方法能实现弱信号检测,能有效地应用于刀具磨损故障诊断中。In view of the difficulties of fault feature extraction from strong background noise in tool wear early fault diagnosis ,a method was proposed based on twice sampling SR and B-spline neural net-work .First ,SR was employed to remove noise in tool wear vibration signals because of its benefits for enhancing the signal-to-noise ratio ,then ,tool wears with the good fault features were identified by B-spline neural network .In order to improve the deficiency of a single parameter be optimized in the tra-ditional SR and achieve the best SR parameters ,an adaptive SR was proposed based on genetic algo-rithm ,which realized multi-parameter synchronous optimization .The experimental results show that this method can realize the weak signal detection and apply to tool fault diagnosis effectively .
分 类 号:TP164[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13