检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖北理工学院机电工程学院,湖北黄石435003 [2]同济大学现代制造技术研究所,上海201804
出 处:《控制与决策》2014年第9期1649-1654,共6页Control and Decision
基 金:国家863计划项目(2008AA04Z113)
摘 要:针对知识融合产生的新知识规模庞大的问题,提出一个基于本体的融合知识测度指标.利用默认关系强度分析知识单元之间融合的紧密程度,根据词汇链的构建规则定义语义相关度,由概念本体树的语义距离计算概念之间的语义相关度,并运用最大熵模型分析融合知识的语义熵.分析知识元素属性值对融合知识的影响,确定其相应效用权重系数;综合上述指标构建对融合算法具有特定趋势指导作用的融合知识测度,并分析该测度指标对称性、确定性、非负性和扩展性等性质.应用实例表明了所提出指标的有效性,并进一步说明了融合知识测度在知识评价体系中的重要作用.Fusion-knowledge metric based on ontology is presented to control the scale of new knowledge causing by knowledge fusion. The compact degree between knowledge units is analyzed by using tacit relationship strength. Semantic relevancy is formulated based on the construction rule of lexical chains, and calculated with the semantic distance between ontology concepts. The semantic entropy is analyzed by using the maximum entropy model. The utility weight is studied by analyzing the effect of attribute value on fusion-knowledge. On the basis of the above analysis, the fusion-knowledge metric is formulated to guide the design of the knowledge fusion algorithm, and some properties of the fusion-knowledge metric, such as symmetry, determinacy, non-negativity and expansibility, are studied. Finally, the effectiveness of fusion-knowledge metric is demonstrated by an illustrative example, and the important effect of the fusion-knowledge metric on the knowledge evaluation mechanism is discussed.
分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229