检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常俊林[1] 王庆[1] 孟彦军[1] 蒋晓剑[1]
机构地区:[1]中国矿业大学信息与电气工程学院,江苏徐州221000
出 处:《化工自动化及仪表》2014年第4期397-401,454,共6页Control and Instruments in Chemical Industry
基 金:中国矿业大学青年科研基金资助项目(OC090196)
摘 要:针对调度目标为最小化最大完工时间的并行多机批调度问题,提出了改进的基于批序列编码的混合粒子群算法。在基本粒子群算法的基础上,引入了学习因子二阶振荡、随机权重、最大速度线性递减及自然选择等方法,改善了算法本身易陷入局部最优及早熟收敛等问题,并解决了因引入新的方法造成算法收敛速度慢及寻优能力差等问题。由仿真结果可知:改进的算法均优于常规的粒子群算法,且根据批序列编码的改进算法更优于常规基于工件序列编码的改进算法。Aiming at minimizing the maximum completion time on the parallel machines,an improved hybrid particle swarm algorithm based on batch sequence encoding was proposed; and basing on the basic particle swarm optimization algorithm,the methods like the second-order oscillative learning factor,the random weight,the maximum speed linear degressive and the natural selection were introduced to solve problems such as falling into local optimum and premature convergence,slow convergence and poor ability of optimization caused by newly-introduced methods.Simulation results demonstrate that the improved algorithm outperforms the normal particle swarm algorithm,and the improved algorithm based on batch sequence works better than the improved algorithm based on workpiece sequence.
分 类 号:TH865[机械工程—仪器科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.23.110