基于混合智能系统的设备故障诊断研究  

Research on equipment fault diagnosis based on hybrid intelligent systems

在线阅读下载全文

作  者:孙妍姑[1] 

机构地区:[1]淮南师范学院计算机与信息工程系,安徽淮南232038

出  处:《淮南师范学院学报》2014年第5期80-83,共4页Journal of Huainan Normal University

基  金:安徽高校省级自然科学研究项目(KJ2013Z304)

摘  要:为研究和改进人工智能技术在设备故障诊断中的缺点和不足,提高故障诊断的准确率,构建了一种混合智能诊断系统。首先利用小波包分析技术对设备故障进行特征提取和分析;接着对数据进行离散化处理,应用粗糙集对获得的故障特征向量进行约简,删除冗余信息;然后利用免疫遗传算法的全局优化能力去训练BP神经网络的权值,建立免疫遗传-BP神经网络模型;最后把经粗糙集约简后的故障特征向量输入该模型,完成故障识别和智能诊断。通过旋转机械的转子系统的仿真实验,表明基于小波包-混合智能的故障诊断取得了良好的诊断效果。To improve shortcomings and the insufficiency in the research of artificial intelligence technology in equipment fault diagnosis,and to enhance the accuracy in fault diagnosis,a hybrid intelligent diagnosis system is constructed.First,wavelet packet analysis technique is used for feature extraction and analysis of equipment failure.Second,the data is dispersing processed,application of rough set to obtain fault characteristic vectors reduction,delete redundant information.Third,global optimization ability of immune genetic algorithm is then used to train the weights of BP neural network,immune genetic-BP neural network model is set up.Finally,after the input of the fault feature vectors by rough set reduction,the fault recognition and intelligent diagnostics is completed.Through the simulation experiment of rotating machinery rotor system,suggests hybrid intelligent fault diagnosis based on wavelet packet has obtained the good diagnosis effect.

关 键 词:设备故障诊断 混合智能系统 小波包分解 粗糙集 免疫遗传算法 BP神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象