检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Albert KUBZDELA Cristina PEREZ-GARCIA
机构地区:[1]Institute of Civil Engineering,Poznań University of Technology,Ul.Piotrowo 5,61-138 Poznań,Poland [2]Department of Mathematics,Facultad de Ciencias,Universidad de Cantabria,Avda.de los Castros s/n,39071,Santander,Spain
出 处:《Acta Mathematica Sinica,English Series》2014年第11期1833-1845,共13页数学学报(英文版)
基 金:partially supported by Ministerio de Ciencia e Innovación,MTM2010-20190-C02-02
摘 要:A non-Archimedean Banach space has the orthogonal finite-dimensional decomposition property(OFDDP) if it is the orthogonal direct sum of a sequence of finite-dimensional subspaces.This property has an influence in the non-Archimedean Grothendieck's approximation theory,where an open problem is the following: Let E be a non-Archimedean Banach space of countable type with the OFDDP and let D be a closed subspace of E.Does D have the OFDDP? In this paper we give a negative answer to this question; we construct a Banach space of countable type with the OFDDP having a one-codimensional subspace without the OFDDP.Next we prove that,however,for certain classes of Banach spaces of countable type,the OFDDP is preserved by taking finite-codimensional subspaces.A non-Archimedean Banach space has the orthogonal finite-dimensional decomposition property(OFDDP) if it is the orthogonal direct sum of a sequence of finite-dimensional subspaces.This property has an influence in the non-Archimedean Grothendieck's approximation theory,where an open problem is the following: Let E be a non-Archimedean Banach space of countable type with the OFDDP and let D be a closed subspace of E.Does D have the OFDDP? In this paper we give a negative answer to this question; we construct a Banach space of countable type with the OFDDP having a one-codimensional subspace without the OFDDP.Next we prove that,however,for certain classes of Banach spaces of countable type,the OFDDP is preserved by taking finite-codimensional subspaces.
关 键 词:Non-Archimedean Banach spaces finite-dimensional decomposition property orthogonal base
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7