基于改进半监督SVR算法的忙时话务量预测  

Busy traffic forecasting based on improved semi supervised SVR algorithm

在线阅读下载全文

作  者:兰娇[1] 覃锡忠[1] 贾振红[1] 陈丽 

机构地区:[1]新疆大学信息科学与工程学院,乌鲁木齐830046 [2]中国移动通信集团新疆有限公司,乌鲁木齐830046

出  处:《计算机工程与应用》2014年第20期211-214,共4页Computer Engineering and Applications

基  金:中国移动通信集团新疆有限公司研究发展基金项目(No.XJM2011-11)

摘  要:为了提高运营商节假日忙时话务量的预测精度,通过分析各节假日忙时话务量数据的特点,提出基于改进半监督支持向量机预测算法。该方法采用基于图形拉普拉斯算子的半监督学习算法来变形训练支持向量回归机的核矩阵。针对图形拉普拉斯算子计算量较大的问题,采用Nystrom算法对其进行优化。仿真结果表明,提出的算法有较好的泛化能力和较高的预测精度。In order to improve the operator holidays busy traffic prediction accuracy, through analyzing the holidays busy traffic data characteristics, it puts forward the improved semi supervised SVR prediction algorithm. The method uses the semi supervised learning based on graph Laplacian to deform and train SVR kernel matrix. In allusion to graph Laplacian large amount of calculation, the Nystrom algorithm is proposed to optimize it. The simulation results show that the pro-posed algorithm has a good generalization ability and high prediction precision.

关 键 词:节假日忙时话务预测 支持向量回归机 半监督学习 图形拉普拉斯算子 Nystrom算法 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象