属性约简的两阶段遗传算法  被引量:6

Two-phase genetic algorithm for attributes reduction

在线阅读下载全文

作  者:安利平[1] 刘森[1] 

机构地区:[1]南开大学商学院,天津300071

出  处:《系统工程理论与实践》2014年第11期2892-2899,共8页Systems Engineering-Theory & Practice

基  金:国家自然科学基金(71071079)

摘  要:属性约简是数据挖掘的一个重要研究内容.为了解决具有多种属性类型的决策表约简问题,在粗集和二元关系聚合理论的基础上,利用属性重要性作为评价标准,提出了一种两阶段遗传约简算法.算法的第一阶段是为了找出尽可能多的约简,第二阶段力求寻找最小约简.根据算法每个阶段的目标设计了编码方案、种群规模、适应度函数、终止条件、选择、变异和修正操作.实验表明,与标准遗传算法相比,两阶段算法在计算最小约简时更为准确和稳定.Attribute reduction is an important aspect in data mining. In order to solve the reduction problems in a decision table with multiple attribute types, based on the theory of rough sets and binary relation aggregation, a two-phase genetic reduction algorithm is proposed using the attribute importance as evaluation criteria. The first stage of the algorithm is to find the reducts as much as possible, and the second stage is to find the minimal reduct. According to the goal of each stage, the coding scheme, the size of population, fitness function, termination condition, selection, mutation and correct operation of the two-phase genetic algorithm are designed. Experiments show that, compared with the standard genetic algorithm, the two-phase algorithm is more accurate and stable in the calculation of reduct.

关 键 词:粗集 遗传算法 属性约简 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象