卡方分布密度函数与分布函数的渐近展开  被引量:5

Asymptotic Expansions of the Probability Density Function and the Distribution Function of Chi-Square Distribution

在线阅读下载全文

作  者:陈刚[1] 王梦婕 

机构地区:[1]南通职业大学基础课部,江苏南通226007 [2]加拿大百年理工学院商学院

出  处:《南京师大学报(自然科学版)》2014年第3期39-43,共5页Journal of Nanjing Normal University(Natural Science Edition)

基  金:江苏省自然科学基金(BK20141326);江苏省高等教育教学改革研究课题重点项目(2011JSJG085)

摘  要:通过对χ2分布概率密度函数的自变量进行标准化变换,将其展开成如下形式:(1/2)nχ2(x;n)=1+r1(t)n+r2(t)n+r3(t)n n+r4(t)n2[]φ(t)+o1n2(),其中n为自由度,φ(t)为标准正态分布的密度函数,ri(t)(1≤i≤4)均为关于t的多项式.从该展开式得到χ2分布密度函数的一个近似计算公式.进一步建立φ(t)的幂系数积分递推关系,得到χ2分布函数的渐近展开式.最后通过数值计算验证了这些结果在实际应用中的有效性.Through the transformation of the independent variable of χ^2distribution probability density function,degree of freedom of which is n,the equation can be expanded as follows: √2nχ^2(x;n)=[1+r1(t)/√n+r2(t)/√n+r3(t)/n√n+r4(t)/n^2]φ(t)+o(1/n^2),here,φ( t) is a density function of standard normal distribution;ri( t) is a 3i order polynomial of t( 1≤i≤4). An approximate formula can be obtained from the expansion of the distribution density function. We further establish the integral recurrence relations of the power coefficients of the standard normal density function and obtain the asymptotic expansion of the distribution function of χ^2. Finally,the effectiveness of these results in practical application was verified by the numerical calculations.

关 键 词:Χ^2分布 概率密度函数 分布函数 渐近展开 标准化变换 

分 类 号:O211[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象