检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王睿[1]
机构地区:[1]四川职业技术学院计算机科学系,四川遂宁629000
出 处:《科技通报》2014年第10期148-150,共3页Bulletin of Science and Technology
摘 要:精密的大脑切片图像的微细分解处理是进行图像特征分析的基础,传统的人工鱼群算法对图像微细区域进行分解时,融入局部信息导致图像噪声增强,难以有效提取图像的数值特征信息,分解效果不好。提出一种基于直觉模糊集的人工鱼群搜索算法,根据模糊集理论,进行直觉模糊集构造。在人工鱼群寻优搜索到的引领粒子附近自组织搜索更优特征解,利用直觉模糊集的均匀遍历特性全局搜索微细特征,不需要人为的干预,更适合处理一些模糊的和不确定的问题,适用于图像的微细分解。仿真实验得出该算法在处理含强噪声的脑切片图像时,微细分解精度很好,精度和计算复杂度等方面较传统方法有优越性。The micro decomposition of the brain image is the foundation of image feature analysis. Traditional artificial fish swarm algorithm (AFSA) fuses the local information, which leads to image noise enhancement. It is difficult to effectively ex-tract the numerical image feature information, so the decomposition effect is not good. An improved micro decomposition method of slice image is proposed based on intuitive fuzzy sets of artificial fish swarm search, fuzzy set theory is used, and the intuitive fuzzy set is constructed. AFSA is used to search more feature, and get the self-organization search solution. The uniformly ergodic properties is used to search global micro characteristics, without the human intervention, so it is more suitable for dealing with fuzzy and uncertain problems. It is applicable to the image micro decomposition. The brain slices with strong noise is used as the sample in experiment, results show that the algorithm has better performance in preci-sion and computational complexity.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249