检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李学成[1] 段田东[1] 徐文艳[1] 吴素琴[1]
机构地区:[1]信息工程大学,河南郑州450001
出 处:《信息工程大学学报》2014年第5期570-575,共6页Journal of Information Engineering University
基 金:国家科技重大专项资助项目(2011ZX03003-003-02)
摘 要:为解决无线复杂环境下同型号通信电台发送的信号识别问题,针对传统时频方法处理杂散细微特征存在不足,提出了一种基于固有时间尺度分解(intrinsic time-scale decomposition,ITD)的信号细微特征识别方法。首先通过ITD方法将稳态状态下信号分解,计算分量瞬时参数并得到信号的时频谱,然后提取频谱特征作为细微特征,最后使用SVM分类器进行模式训练以实现信号的识别。仿真结果表明,该算法能够解决传统方法的实时性和准确性差等问题,取得较好的识别效果。This paper presents a new model for signal feature identification based on intrinsic timescale decomposition to solve the problem with the identification of the same signals from different radio transmitters in complex wireless environment,and to eliminate shortcomings in dealing with stray features with the traditional time-frequency method. First,intrinsic time-scale decomposition is adopted to decompose the steady state signal,and instantaneous parameters of components are calculated in order to gain time-frequency spectrum. Then,spectrum features are extracted as the fine features,which are used for the classification identification of signals by SVM classifier. Simulation results show that the method not only solves the problem of the poor instantaneity and accuracy of the traditional time-frequency method,but also identifies the transmitters efficiently.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4