检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李庆利[1] 张帆[1] 韩忠义[1] 李自芹[1] 王天杰[1]
出 处:《组合机床与自动化加工技术》2014年第10期63-65,共3页Modular Machine Tool & Automatic Manufacturing Technique
基 金:河北省科技计划项目(13211815)
摘 要:图像预处理是零件特征提取与识别的基础,处理质量直接决定后期识别的效果。提出了基于灰色关联分析的图像分割新算法,该算法通过分析像素点序列与代表目标的参考序列的灰色关联度来进行区域分割。通过测量实验,证明其对于在较复杂背景图像中较模糊的目标边缘具有较好的检测效果。可完整的提取出目标区域,并得到连续封闭的目标边缘,为后续的零件目标识别打下了良好的基础。Image preprocessing is fundamental to the feature extraction and recognition of spare parts. The quality of the preprocessed image determines the effectiveness of the subsequent recognition. In the paper,a new image segmentation algorithm base on grey incidence analysis is discussed and attempted,in which grey incidence of the current pixel series and the reference series representing the object is applied to the regional segmentation. Measurements and experimentations show that the algorithm exhibits good performance for images with considerably complex background and blurred edge. The object region can be extracted completely and a closed and connected border can be obtained,which has laid a good foundation for the subsequent object recognition of the spare parts.
分 类 号:TH162[机械工程—机械制造及自动化] TG509[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239