检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北省计算机虚拟技术与系统集成重点实验室,河北秦皇岛066004 [2]燕山大学信息科学与工程学院,河北秦皇岛066004
出 处:《计量学报》2014年第6期569-573,共5页Acta Metrologica Sinica
基 金:国家自然科学基金(61379065);河北省自然科学基金(F2014203119)
摘 要:针对现有深度图像遮挡检测方法不能有效地检测出深度信息变化不明显的遮挡边界点的状况,提出了8邻域总深度差特征和最大面积特征,并定义了计算方法。在此基础上,提出一种新的基于集成学习思想的深度图像遮挡边界检测方法,该方法结合所提新特征及现有遮挡相关特征训练基于决策树的AdaBOOst分类器,完成对深度图像中遮挡边界点及非遮挡边界点的分类,实现对深度图像中遮挡边界的检测。实验结果表明,同已有方法相比,所提方法具有较高的准确性和较好的普适性。The existing occlusion detection method for depth image can not effectively detect the occlusion boundary point with less obvious depth change, this status should be changed. The eight neighborhood total depth difference feature and maximal area feature are proposed firstly, and then the calculation methods for these two new features are defined. On this basis, a new occlusion detection approach based on ensemble learning is proposed, which combines the proposed features and existing occlusion related features to train the decision tree-based AdaBoost classifier to classify the pixel of depth image into occlusion boundary point or non-occlusion boundary point. The experimental results show that, compared with the existing methods, the proposed approach has higher accuracy and better universality.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13