Formation of explosively formed penetrator with fins and its flight characteristics  被引量:9

Formation of explosively formed penetrator with fins and its flight characteristics

在线阅读下载全文

作  者:Jian-qing LIU Wen-bin GU Ming LU Hao-ming XU Shuang-zhang WU 

机构地区:[1]College of Field Engineering,PLA University of Science & Technology

出  处:《Defence Technology(防务技术)》2014年第2期119-123,共5页Defence Technology

摘  要:The ultimate goal of weapon system employing an explosively formed penetrator(EFP) is to defeat a target at the longest standoff.In order to do this,an EFP must be aerodynamically stable so as to strike the target at a small angle of obliquity,and the decay velocity per meter of EFP must be smaller at extended standoff.As the angle of attack increases,the penetration ability of EFP greatly reduces.The fins improve the EFP aeroballistic characteristics and decrease the flight drag of EFP as well.EFP with fins formed by three-point initiation is presented.The formation of EFP with fins is studied by LS-DYNA,and the aeroballistics is studied through experiment.The experimental results show that the decay velocity per meter of EFP with fins is much smaller than that of normal EFP.and the attitude angle steadily decreases.The ultimate goal of weapon system employing an explosively formed penetrator (EFP) is to defeat a target at the longest standoff. In order to do this, an EFP must be aerodynamically stable so as to strike the target at a small angle of obliquity, and the decay velocity per meter of EFP must be smaller at extended standoff. As the angle of attack increases, the penetration ability of EFP greatly reduces. The fins improve the EFP aeroballistic characteristics and decrease the flight drag of EFP as well, EFP with fins formed by three-point initiation is presented. The for- mation of EFP with fins is studied by LS-DYNA, and the aeroballistics is studied through experiment. The experimental results show that the decay velocity per meter of EFP with fins is much smaller than that of normal EFP, and the attitude angle steadily decreases.

关 键 词:爆炸成型弹丸 飞行特性 散热片 LS-DYNA EFP 衰减速度 武器系统 动力稳定 

分 类 号:TJ410.33[兵器科学与技术—火炮、自动武器与弹药工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象