基于混合高斯隐马尔可夫模型的带式输送机堆煤时刻预测方法  被引量:1

A prediction method of coal piling time for belt conveyor based on mixture of Gaussian and hidden Markov model

在线阅读下载全文

作  者:钱建生[1] 李小斌[1,2] 秦文光 秦海初 

机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221008 [2]江苏师范大学计算机科学与技术学院,江苏徐州221116 [3]山西中煤华晋能源有限责任公司,山西河津043300

出  处:《工矿自动化》2014年第11期26-30,共5页Journal Of Mine Automation

基  金:国家高技术研究发展计划(863计划)资助项目(2012AA062103);江苏省产学研联合创新基金前瞻性联合研究项目(BY2012081);江苏省科技成果转化项目(BA2010058);江苏师范大学重点基金项目(10XLA13)

摘  要:提出了一种基于混合高斯隐马尔可夫模型的带式输送机堆煤时刻预测方法。该方法根据传感器采集的带式输送机功率时序数据建立带式输送机运行状态的混合高斯隐马尔可夫模型,基于该模型采用基于图的状态序列遍历算法和基于切普曼-柯尔莫哥罗夫方程的概率转移算法对带式输送机堆煤时刻进行预测:基于图的状态序列遍历算法通过寻找当前状态到堆煤状态的通路确定剩余时间;基于切普曼-柯尔莫哥罗夫方程的概率转移算法通过粒子群优化算法及切普曼-柯尔莫哥罗夫方程交叉验证来获取训练样本上失败状态的概率阈值,并计算当前的状态迁移到超过失败状态概率阈值的转移次数来确定剩余时间。基于煤矿生产实际数据集的实验验证了该方法可有效预测带式输送机的堆煤发生时刻。A prediction method of coal piling time based on mixture of gaussian and hidden Markov model(MG-HMM)was proposed.In the method,MG-HMM models of running state of belt conveyor are built according to power time series collected by sensors.Based on the models,two algorithms are raised up to predict coal piling time of belt conveyor:graph based path traversal algorithm is used to estimate remaining useful life by finding a connection path from current state to pile coal state,and probability transition algorithm based on Chapman-Kolmogrov equation is used to predict remaining useful life by counting number of shifting times from current state to the state whose probability is larger thanathreshold.The threshold is determined by particle swarm optimization and Chapman-Kolmogrov equation.Several experiments are carried on benchmark data sets and mine production data.The experimental results demonstrate that the method can effectively predict occurrence time of coal piling.

关 键 词:带式输送机 堆煤时刻 堆煤预测 剩余寿命 隐马尔可夫模型 混合高斯隐马尔科夫模型 切普曼-柯尔莫哥罗夫方程 

分 类 号:TD67[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象