基于向量投影的代谢支持向量机乙烯精馏产品质量软测量建模  被引量:1

Soft-sensor modeling for ethylene distillation product quality based on vector projection metabolism support vector machine

在线阅读下载全文

作  者:郑博元[1] 苏成利[1] 李平[1] 苏胜蛟 

机构地区:[1]辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001 [2]中国石油天然气股份有限公司抚顺石化分公司,辽宁抚顺113004

出  处:《化工学报》2014年第12期4883-4889,共7页CIESC Journal

基  金:国家自然科学基金项目(61203021);辽宁省科技攻关项目(2011216011)~~

摘  要:针对支持向量机(SVM)增量学习过程中易出现计算速度慢、稳定性差的缺陷,提出了一种基于向量投影的代谢支持向量机建模方法。该方法首先运用向量投影算法对训练样本进行预选取来减少样本数量,提高SVM建模速度。然后将新增样本'代谢'原则引入SVM增量学习过程中,以解决因新增样本不断加入而导致训练样本数量'爆炸'的问题。最后将该方法用于乙烯精馏产品质量软测量建模,实验结果表明,与传统SVM和最小二乘支持向量机(LSSVM)相比,向量投影的代谢SVM具有更好的预测结果。A metabolism support vector machine (SVM) based modeling method was proposed to solve the problems that slowed down computing speed and caused poor stability during SVM incremental learning. Firstly, vector projection algorithm was used to pre-extract training samples, in order to reduce the number of samples and improve SVM modeling speed. Secondly, a new sample "metabolism" principle was pulled into the SVM incremental learning process, for addressing "explosion" of training samples number which was caused by adding new samples continuously. Finally, the vector projection metabolism SVM was utilized in ethylene distillation product quality soft-sensor modeling. The experiment results showed that vector projection metabolism SVM had better prediction result than SVM and LSSVM.

关 键 词:动态建模 预测 模型 乙烯精馏 代谢支持向量机 向量投影 软测量 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象