基于遗传算法的主动油气悬架分层控制  被引量:8

Hierarchy Control Strategy for Active Hydro-Pneumatic Suspension Vehicles Based on Genetic Algorithm

在线阅读下载全文

作  者:冯金芝[1] 喻凡[2] 郑松林[1] 孙涛[1] 高大威[1] 

机构地区:[1]上海理工大学机械工业汽车底盘机械零部件强度与可靠性评价重点实验室,上海200093 [2]上海交通大学机械系统与振动国家重点实验室,上海200240

出  处:《上海交通大学学报》2014年第4期525-531,共7页Journal of Shanghai Jiaotong University

基  金:国家自然科学基金资助项目(51375313,51305269);国家高技术研究发展计划(863)项目(2012AA110701);上海市科委重点项目(11140502000,13JC1408500)

摘  要:根据主动油气悬架系统执行机构的动态特性,采用分层控制策略设计了有限带宽主动油气悬架系统上、下层控制器.基于遗传算法(GA)对模糊PID上层控制器的参数进行了优化设计,通过在线评价车辆动力学指标,决定是否启动GA在初期最优可行域附近优化当前上层控制器参数,以保证车辆在行驶路况或自身参数变化等情况下仍获得较好的控制效果.将搭建的主动油气悬架系统控制模块施加于整车多体系统动力学模型进行联合仿真计算,结果表明,所设计的主动油气悬架系统可显著改善车辆行驶平顺性,并且具有较强的鲁棒性和自适应能力.The purpose of this paper is to improve the performance of vehicles with active hydro-pneumatic suspension system, a new hierarchy control strategy for the active hydro-pneumatic suspension system was proposed with consideration of the actuator dynamic characteristics. The parameters of the upper con- troller of the fuzzy logic PID controller were optimized based on a genetic algorithm (GA). In addition, considering the practical implementation of the proposed control scheme, a GA-based self learning process was initiated only when the defined performance index of the vehicle dynamics went beyond a threshold for a debounce time. The proposed control strategy was implemented on the virtual prototype and co-simula- tions were launched with different road disturbance inputs. The co-simulation results show that the active hydro-pneumatic suspension system proposed in this paper can significantly improve the vehicle riding com- fort characteristic. The robustness and adaptability of proposed controller were also examined even when the control system was subjected to severe road conditions or continuously extreme rough road conditions.

关 键 词:油气悬架 分层控制 联合模糊PID控制 遗传算法 

分 类 号:U461.6[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象