检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工程技术大学软件学院,辽宁葫芦岛125105
出 处:《计算机工程》2014年第11期172-177,共6页Computer Engineering
基 金:国家自然科学基金资助项目(60903082);辽宁省教育厅基金资助项目(L2012113)
摘 要:针对k-means算法的聚类结果高度依赖初始聚类中心选取的问题,提出一种基于改进粒子群优化的文本聚类算法。分析粒子群算法和k-means算法的特点,针对粒子群算法搜索精度不高、易陷入局部最优且早熟收敛的缺点,设计自调节惯性权重机制及云变异算子以改进粒子群算法。自调节惯性权重机制根据种群进化程度,动态地调节惯性权重,云变异算子基于云模型的随机性和稳定性,采用全局最优值实现粒子的变异。该算法结合了粒子群算法较强的全局搜索能力与k-means算法较强的局部搜索能力。每个粒子是一组聚类中心,类内离散度之和的倒数是适应度函数。实验结果表明,该算法是一种精确而又稳定的文本聚类算法。Clustering result of k-means clustering algorithm is highly dependent on the choice of the initial cluster center. With regards to this, a text clustering algorithm based on improved Particle Swarm Optimization ( PSO ) is presented. Features of particle swarm algorithm and k-means algorithm are analysed. Considering the disadvantages of PSO including low solving precisions, high possibilities of being trapped in local optimization and premature convergence,self-regulating mechanism of inertia weight and cloud mutation operator are designed to improve PSO. Self-regulating mechanism of inertia weight adjusts the inertia weight dynamically according to the degree of the population evolution. Cloud mutation operator is based on stable tendency and randomness property of cloud model. The global best individual is used to complete mutation on particles. Those two algorithms are combined by taking advantages of power global search ability of PSO and strong capacity of local search of k-means. A particle is a group of clustering centers,and a sum of scatter within class is fitness function. Experimental results show that this algorithm is an accurate,efficient and stable text clustering algorithm.
关 键 词:粒子群优化 自调节惯性权重机制 进化程度 云变异算子 K-MEANS算法 文本聚类
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.96.239