检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《工业工程》2014年第5期35-40,共6页Industrial Engineering Journal
基 金:国家自然科学基金资助项目(71071122)
摘 要:通过汽车用户的行为特征对用户的车辆进行售后服务知识推理对汽车售后服务质量的提升有着重要的意义。利用粗糙集与信息熵理论从众多的用户行为属性中提取出对汽车部件的状态有显著影响的客户特征行为属性作为推理证据,运用决策规则强度对各证据对应的基本概率赋值(BPA)进行了确定,在此基础上运用D_S证据理论对各证据进行了合成,推理出客户的服务需求。通过实例证明了该方法可用于汽车售后服务知识推理。Using the data of customer′s behavior characteristics to predict the customer′s demand for serv-ice has significance to improve the quality of automotive after-sales service .This paper rough set and entro-py theory are made use of to extract the characteristic attributes from a large number of customer behavior attributes , which have significant effect on the state of the automotive parts .The reasoning evidences are constituted by these characteristic attributes .The BPA( basic probability assignment ) corresponding to ev-ery evidence is calculated by decision rules′intensity .Meanwhile , the comprehensive evidence is calculated by using the D_S evidential theory to synthesize the BPA .The customers′service requirements can be inferred by this method .The method is proved by a case that it can be used for car′s after-sales service knowledge reasoning .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69