检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LEI Na TENG Yuan REN Yu-xue
机构地区:[1]School of Mathematics, Jilin University
出 处:《Applied Mathematics(A Journal of Chinese Universities)》2014年第4期438-454,共17页高校应用数学学报(英文版)(B辑)
基 金:Supported by the National Natural Science Foundation of China(11271156 and 11171133);the Technology Development Plan of Jilin Province(20130522104JH)
摘 要:Multivariate Hermite interpolation is widely applied in many fields, such as finite element construction, inverse engineering, CAD etc.. For arbitrarily given Hermite interpolation conditions, the typical method is to compute the vanishing ideal I (the set of polynomials satisfying all the homogeneous interpolation conditions are zero) and then use a complete residue system modulo I as the interpolation basis. Thus the interpolation problem can be converted into solving a linear equation system. A generic algorithm was presented in [18], which is a generalization of BM algorithm [22] and the complexity is O(τ^3) where r represents the number of the interpolation conditions. In this paper we derive a method to obtain the residue system directly from the relative position of the points and the corresponding derivative conditions (presented by lower sets) and then use fast GEPP to solve the linear system with O((τ + 3)τ^2) operations, where τ is the displacement-rank of the coefficient matrix. In the best case τ = 1 and in the worst case τ = [τ/n], where n is the number of variables.Multivariate Hermite interpolation is widely applied in many fields, such as finite element construction, inverse engineering, CAD etc.. For arbitrarily given Hermite interpolation conditions, the typical method is to compute the vanishing ideal I (the set of polynomials satisfying all the homogeneous interpolation conditions are zero) and then use a complete residue system modulo I as the interpolation basis. Thus the interpolation problem can be converted into solving a linear equation system. A generic algorithm was presented in [18], which is a generalization of BM algorithm [22] and the complexity is O(τ^3) where r represents the number of the interpolation conditions. In this paper we derive a method to obtain the residue system directly from the relative position of the points and the corresponding derivative conditions (presented by lower sets) and then use fast GEPP to solve the linear system with O((τ + 3)τ^2) operations, where τ is the displacement-rank of the coefficient matrix. In the best case τ = 1 and in the worst case τ = [τ/n], where n is the number of variables.
关 键 词:vanishing ideal multivariate Hermite interpolation displacement structure fast GEPP algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222