A fast algorithm for multivariate Hermite interpolation  

A fast algorithm for multivariate Hermite interpolation

在线阅读下载全文

作  者:LEI Na TENG Yuan REN Yu-xue 

机构地区:[1]School of Mathematics, Jilin University

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2014年第4期438-454,共17页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China(11271156 and 11171133);the Technology Development Plan of Jilin Province(20130522104JH)

摘  要:Multivariate Hermite interpolation is widely applied in many fields, such as finite element construction, inverse engineering, CAD etc.. For arbitrarily given Hermite interpolation conditions, the typical method is to compute the vanishing ideal I (the set of polynomials satisfying all the homogeneous interpolation conditions are zero) and then use a complete residue system modulo I as the interpolation basis. Thus the interpolation problem can be converted into solving a linear equation system. A generic algorithm was presented in [18], which is a generalization of BM algorithm [22] and the complexity is O(τ^3) where r represents the number of the interpolation conditions. In this paper we derive a method to obtain the residue system directly from the relative position of the points and the corresponding derivative conditions (presented by lower sets) and then use fast GEPP to solve the linear system with O((τ + 3)τ^2) operations, where τ is the displacement-rank of the coefficient matrix. In the best case τ = 1 and in the worst case τ = [τ/n], where n is the number of variables.Multivariate Hermite interpolation is widely applied in many fields, such as finite element construction, inverse engineering, CAD etc.. For arbitrarily given Hermite interpolation conditions, the typical method is to compute the vanishing ideal I (the set of polynomials satisfying all the homogeneous interpolation conditions are zero) and then use a complete residue system modulo I as the interpolation basis. Thus the interpolation problem can be converted into solving a linear equation system. A generic algorithm was presented in [18], which is a generalization of BM algorithm [22] and the complexity is O(τ^3) where r represents the number of the interpolation conditions. In this paper we derive a method to obtain the residue system directly from the relative position of the points and the corresponding derivative conditions (presented by lower sets) and then use fast GEPP to solve the linear system with O((τ + 3)τ^2) operations, where τ is the displacement-rank of the coefficient matrix. In the best case τ = 1 and in the worst case τ = [τ/n], where n is the number of variables.

关 键 词:vanishing ideal multivariate Hermite interpolation displacement structure fast GEPP algorithm. 

分 类 号:O241.3[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象