检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《振动与冲击》2014年第22期111-114,共4页Journal of Vibration and Shock
基 金:吉林省科技发展计划项目(20100506)
摘 要:为解决支持向量机算法(Support Vector Machine,SVM)的核函数参数及惩罚因子参数选取的盲目性,利用果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)对SVM中参数进行优化。提出基于FOA的SVM故障诊断算法,并对汽轮机故障实验数据进行模式识别。该算法能对SVM相关参数自动寻优,且能达到较理想的全局最优解。通过与常用的粒子群算法(Particle Swarm Optimization,PSO)与遗传算法(Genetic Algorithm,GA)优化后支持向量机进行对比。结果表明,FOA-SVM算法稳定、识别速度快、识别率高。In order to solve the problem that the selection of the kernel function parameters and penalty factor parameters in the support vector machine(SVM)algorithm is blindfold,the fruit fly optimization algorithm (FOA)was applied to optimize the parameters in SVM.A fault diagnosis algorithm of SVM based on FOA was put forward,and then the pattern recognition of experimental turbine failure data was performed.The algorithm can optimize the SVM parameters automatically,and achieve ideal global optimal solution.Comparing with the SVMwhich is optimized by the commonly used methods of the particle swarm optimization(PSO)and the Genetic Algorithm (GA),the results demonstrate that FOA-SVM has the fastest recognition speed and the highest recognition rate.
分 类 号:TK267[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.213.240