检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学信息与控制工程学院,西安710055
出 处:《北京工业大学学报》2014年第7期1105-1109,共5页Journal of Beijing University of Technology
基 金:陕西省自然科学基金资助项目(2013JM8030);陕西省科学技术研究发展计划资助项目(2013K13-04-08);陕西省教育厅专项基金资助项目(2013JK1091)
摘 要:针对基于多尺度马尔可夫随机场(Markov random fields,MRF)的图像分割中常产生块效应的问题,提出了一种多尺度置信度传播(belief propagation)算法,通过建立不同尺度的局部区域,在MRF分割模型上进行区域消息的传播,最终基于局部区域概率的最大后验准则(maximum a posterior)得到图像的分割结果.提出的算法把图像的局部区域特征和全局特征结合起来,在图像的精细层进行多尺度消息的传递,避免了常规多尺度MRF模型层间误分类的传递.提出的算法不仅得到了更准确的图像分割结果,而且具有较快的分割速度.实验结果表明了提出算法的有效性.Image segmentation approaches based on the conventional multiresolution Markov random field (MRF) often produced blocky artifacts. To solve this problem, a new multiscale local region belief propagation (BP) algorithm was proposed. This algorithm based on MRF model built local region messages with different scales, then the messages were propagated on MRF, and segmentation results were finally estimated by local region probabilities based on maximum a posterior (MAP) criterion. This algorithm combined local region features with global features, and multiscale messages were propagated on the finest MRF, which avoided misclassified result propagating between levels on the conventional multiresolution MRF model. Therefore, the proposed algorithm obtained not only more accurate segmentation results but also faster speeds. Experimental results on a wide variety of images had verified the effectiveness of this algorithm.
关 键 词:马尔可夫随机场 置信度传播 图像分割 最大后验准则
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13