检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙玉宝[1,2] 李欢[3] 吴敏[4] 吴泽彬[2] 贺金平[3] 刘青山[1]
机构地区:[1]南京信息工程大学信息与控制学院,南京210014 [2]南京理工大学计算机科学与工程学院,南京210094 [3]北京空间机电研究所,北京100076 [4]南京军区南京总医院医学工程科,南京210002
出 处:《电子与信息学报》2014年第12期2942-2948,共7页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61272223,61300162,81201161);江苏省自然科学基金(BK2012045,BK20131003);中国博士后基金(20110491429);江苏省博士后基金(1101083C);CAST创新基金(201227);江苏省光谱成像与智能感知重点实验室基金资助课题
摘 要:压缩感知重建是解决高光谱现有成像模式数据量大冗余度高问题的一个有效机制。针对高光谱图像的多通道特性,该文建立了高光谱压缩感知的多测量向量模型,编码端使用随机卷积算子对各通道进行快速采样,生成测量向量矩阵。解码端构建图稀疏正则化的联合重建模型,在稀疏变换域将高光谱图像分解为谱间的关联成分和差异成分,通过图结构化稀疏度量表征关联成分的空谱相关性,并约束谱间差异成分的稀疏性。进一步提出模型求解的交替方向乘子迭代算法,通过引入辅助变量与线性化技巧,使得每一子问题均存在解析解,降低了模型求解的复杂度。对多个实测数据集进行了对比实验,实验结果验证了该文模型与算法的有效性。Compressed Sensing (CS) reconstruction of hyperspectral image is an effective mechanism to comedy the traditional hypcrspectral imaging pattern with the drawback of high redundancy and vast data volume. This paper presents a new multiple measurement vector model for compressed sensing reconstruction of hyperspectral data in consideration of its multiple channel character. In the encoding side, the random convolution operator is used to rapidly obtain the measurement vector of each channel which is subsequently reorganized as a measurement vector matrix. In the decoding side, a joint reconstruction model is proposed to reconstruct the hyperspectral data from the multiple measurement vectors. The model decomposes the hyperspectral data into the inter-channel correlated and differenced component in the sparsifying transform domain, where the correlated component with high spatial and spectral correlation is constrained to be graph structured sparse and the differenced component is constrained to be 11 sparse. A numerical optimization algorithm is also proposed to solve the reconstruction model by the alternating direction method of multiplier. Every sub-problem in the iteration formula admits analysis solution by introducing the auxiliary variable and linearization operation. The complexity of the numerical optimization algorithm is reduced. The experimental results demonstrate the effectiveness of the proposed algorithm.
关 键 词:高光谱图像 压缩感知:多测量向量 图稀疏 交替方向乘子法
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15