检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉轻工大学数学与计算机学院,湖北武汉430023
出 处:《武汉理工大学学报(信息与管理工程版)》2014年第6期759-763,共5页Journal of Wuhan University of Technology:Information & Management Engineering
基 金:湖北省自然科学基金资助项目(2009Chb008;2010CDB06603);湖北省教育厅重点科研基金资助项目(D20101703)
摘 要:针对视频分割中底层特征与高层语义之间的"语义鸿沟"问题,提出了一种基于多模态融合和镜头间竞争力的场景分割算法,对视频帧的图像、文本、音频等模态进行特征提取,用欧式距离、余弦距离计算出同种模态数据的相似性,用典型相关分析法计算出不同模态数据的相关度,分别对各模态数据的相似性和相关度进行融合得到镜头之间的相似度和相关度,采用镜头间竞争力的方法分别对相似镜头和相关镜头进行场景分割并对分割出的两个场景边界集合取交集得到最终的场景边界,从而实现对视频的场景分割。实验结果表明,该方法在场景分割中具有较高的性能,查全率和查准率分别达到82.1%和86.7%。To solve the problem of"semantic gap"between low-level features and high-level semantic in video scene seg-mentation, an algorithm of video scene segmentation was put forward based on multimodal feature fusion and competition.The im-age, text and audio features were abstracted as the low-level features of the video frame.Euclidean distance, cosine similarity distance were used to calculate the similarity of homogeneous data, and the method of canonical correlation analysis was used to calculate the heterogeneous data correlation, respectively.The shot similarity and shot relevance were obtained by similarity fu-sion and correlation fusion.Then a competition analysis of splitting and merging forces for scene segmentation was adopted.The final scene was obtained by take the intersection of two segmented scenarios border sets.Thus the video scene segmentation was realized.The results of experiments show that the video scene can be effectively separated by the proposed method, and the recall ratio, precision reached 82.1%and 86.7%respectively.
关 键 词:竞争力 多模态融合 相似性度量 典型相关性 场景分割
分 类 号:TP37[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28