基于CCD的金属薄板印刷墨层厚度在线检测研究  被引量:6

Online Detection of the Ink Film Thickness of Metal Sheet Printing Based on CCD Method

在线阅读下载全文

作  者:马赛[1] 曹春平[1] 孙宇[1] 

机构地区:[1]南京理工大学,南京210094

出  处:《包装工程》2014年第23期120-125,共6页Packaging Engineering

基  金:江苏省前瞻性联合研究项目(BY20140004-03)

摘  要:目的根据金属薄板印刷质量控制的发展趋势和金属薄板印刷的特点,提出了基于CCD机器视觉的金属薄板印刷机墨层厚度在线检测系统。方法通过实验获取信号条的墨层厚度d与实时图片的RGB值,分析由RGB值推得的亮度L*、饱和度和色调角hab与墨层厚度间的对应关系;通过极限学习机(ELM)对亮度、饱和度、色调角与墨层厚度数据进行回归拟合,建立墨层厚度预测模型。结果墨层厚度d与L*,和hab之间存在显著的对应关系。拟合的平均相对误差为2.27%,最大相对误差为7.33%,测量误差低于8%。结论较好地实现了在线墨层厚度检测,具有很好的实际应用价值。Objective The detection of ink film thickness of metal sheet printing is one of the key technologies in the printing quality control field. According to the development trend and the characteristics of metal sheet printing, an online detection system was proposed for the ink film thickness of metal sheet printing. Methods First, the ink film thickness d and real-time image's RGB values of the signal bars were obtained through experiments. Then, the relationships of the basic attributes of colors(lightness(L*), saturation() and hue(hab)) calculated from the RGB values and the thickness of the ink film were analyzed and the significant corresponding relationships among them were found. Last, an ink film thickness prediction model was established using Extreme Learning Machine(ELM). Results The simulation results showed that the accuracy of the ELM method was much higher than BP and RBF methods with the average relative error of 2.27%, and the maximum relative error of 7.33%. Conclusion It was proved that this detection system could well realize the function of ink film thickness detection and could be applied to the actual testing process.

关 键 词:CCD机器视觉 金属薄板 墨层厚度 极限学习机 

分 类 号:TS802.4[轻工技术与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象