蝙蝠算法优化最二乘支持向量机的网络入侵检测  被引量:6

Network intrusion detection based on least square support vector machine and bat algorithm

在线阅读下载全文

作  者:张蓉[1] 

机构地区:[1]四川工程职业技术学院计算机科学系,四川德阳618000

出  处:《激光杂志》2014年第11期101-104,共4页Laser Journal

摘  要:针对最小二支持向量机(LSSVM)参数选择难题,提出一种蝙蝠(BA)算法优化的LSSVM网络入侵检测模型(BA-LSSVM)。首先将LSSVM参数编码为蝙蝠个体,并以网络入侵检测正确率作为参数目标优化函数,然后通过模拟蝙蝠飞行过程找到LSSVM最优参数,最后根据最优参数建立网络入侵检测模型。在Matlab2012平台采用KDD CUP 99数据集进行仿真测试。仿真结果表明,相对于其它网络入侵检测模型,BA-LSSVM提高了网络入侵检测检测率,加快了网络入侵检测速度。In order to obtain network intrusion detection rate,a novel network intrusion detection model based on least square support vector machine optimized by bat algorithm is proposed.Firstly,parameters of LSSVM are coded as bats individual,and network intrusion detection rate is taken as objection optimization function,and then the optimal parameters of the LSSVM are selected by simulating the bat flying,finally,network intrusion detection model is established according to the optimal parameters.The simulation test is carried out on the Matlab 2012 platform using KDD CUP 99 data sets,and the results show that the proposed mode has improved detection rate and intrusion detection speed compared with other network intrusion detection models.

关 键 词:蝙蝠算法 参数优化 网络入侵 最小二乘支持向量机 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象