检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子设计工程》2014年第23期56-59,共4页Electronic Design Engineering
摘 要:为对传感器进行非线性校正以进一步提高其测量精度,提出了基于神经网络的校正办法。理论分析了传感器非线性误差的复杂性,并以位移传感器标定为例,详细介绍了传感器非线性校正的过程和方法。采用了最小二乘拟合、BP神经网络以及RBF网络三种方法进行校正,设计并实现了RBF网络的校正模型。实验结果证明,RBF网络的校正方法比BP网络校正方法精度提高了约44%,其补偿效果更优,且其在传感器种类变化或环境影响较大的情况下比最小二乘拟合更具非线性补偿优势。In order to further improve measurement accuracy of sensor, a non-linear errors correction method for the sensors based on neural network be proposed. Theoretical analysis of the complexity of the sensor nonlinearity error, took example as displacement sensor calibration, introduced the details of the non-linear sensor calibration process and methods. Three methods including Least Squares, BP Neural Network and RBF Network have been used for errors correcting, designed and implemented a calibration model of RBF Network, and the results shows that the accuracy of RBF Network has been increased by about 44%than the accuracy of BP Network, and it has more nonlinear compensation advantage than the Least Squares in complex environment and various types of multi-sensor application.
关 键 词:神经网络 BP网络 RBF网络 最小二乘法 非线性校正
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249