基于神经网络的传感器非线性误差校正方法  被引量:4

Nonlinear errors correction method of sensors based on neural network

在线阅读下载全文

作  者:樊润洁[1] 朱亚男[1] 

机构地区:[1]西安铁路职业技术学院,陕西西安710014

出  处:《电子设计工程》2014年第23期56-59,共4页Electronic Design Engineering

摘  要:为对传感器进行非线性校正以进一步提高其测量精度,提出了基于神经网络的校正办法。理论分析了传感器非线性误差的复杂性,并以位移传感器标定为例,详细介绍了传感器非线性校正的过程和方法。采用了最小二乘拟合、BP神经网络以及RBF网络三种方法进行校正,设计并实现了RBF网络的校正模型。实验结果证明,RBF网络的校正方法比BP网络校正方法精度提高了约44%,其补偿效果更优,且其在传感器种类变化或环境影响较大的情况下比最小二乘拟合更具非线性补偿优势。In order to further improve measurement accuracy of sensor, a non-linear errors correction method for the sensors based on neural network be proposed. Theoretical analysis of the complexity of the sensor nonlinearity error, took example as displacement sensor calibration, introduced the details of the non-linear sensor calibration process and methods. Three methods including Least Squares, BP Neural Network and RBF Network have been used for errors correcting, designed and implemented a calibration model of RBF Network, and the results shows that the accuracy of RBF Network has been increased by about 44%than the accuracy of BP Network, and it has more nonlinear compensation advantage than the Least Squares in complex environment and various types of multi-sensor application.

关 键 词:神经网络 BP网络 RBF网络 最小二乘法 非线性校正 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象