基于Gabor和LIOP特征的多视角目标识别  被引量:1

Multiple View Object Recognition Based on Gabor and LIOP Feature

在线阅读下载全文

作  者:常永鑫[1,2,3] 余化鹏[1,2,3] 徐智勇[1] 张静[2] 高椿明[2] 

机构地区:[1]中国科学院光电技术研究所,成都610209 [2]电子科技大学光电信息学院,成都610054 [3]中国科学院大学,北京100049

出  处:《光电工程》2014年第11期10-15,共6页Opto-Electronic Engineering

基  金:国家自然科学基金(61205004);中科院科技创新基金资助项目(A08K001)

摘  要:针对被检测目标在视角变化和遮挡时较难识别的问题,提出联合利用Gabor特征和视角变换时共有的LIOP特征对目标进行多角度识别的新算法。首先,用4个方向、16个尺度的二维Gabor滤波器组对输入图像进行滤波,得到64组含有方向信息的Gabor特征响应图,进而对相邻尺度和相应位置计算局部响应最大值,得到具有尺度及平移不变的特征向量。其次,通过几何变换算法获得不同视角下的LIOP特征向量。然后,为了降低时间复杂度,通过主成分分析算法对联合特征降维。最后,把降维后的特征向量输入支持向量机(SVM)进行训练学习,得到检测器模型。为了定量评估算法精度和鲁棒性,在Caltech-101和UIUC car两个标准数据库进行测试,实验结果表明,本文在两个标准数据集上的平均识别率分别达到了92.1%和95.4%,能较好检测不同尺度、不同角度的目标。In order to solve the challenging problems of recognizing object in the angles changing and occlusion, a novel multi-angle algorithm is proposed by combining the Gabor feature and shared LIOP(Local Intensity Order Pattern) feature during the changing poses. First of all, the input image is filtered by a 2D Gabor filter in 4 directions and 16 scales to obtain 64 groups of characteristic response map. And then the scale and translation invariant feature can be derived from computing the maximum response value among the adjacent scales and position. Secondly, the geometric transformation algorithm is utilized to gain the shared LIOP feature under different perspectives. Thirdly,for reducing the time complexity, the dimension of combined features is reduced by the principal component analysis. At last, the calculated feature is trained and learned in SVM for the detecting model. Two standard test databases, Caltech 101 and UIUC car, are introduced to evaluate the accuracy and robustness of the proposed algorithm. The experimental results show that the average precision on two standard databases reach 92.1% and 95.4% high respectively, indicating the excellent performance of the proposed algorithm in recognizing object under various scales and angles.

关 键 词:GABOR特征 LIOP特征 支持向量机 目标识别 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象