检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京林业大学信息科学技术学院,江苏南京210037 [2]南京林业大学生物与环境学院,江苏南京210037
出 处:《南京林业大学学报(自然科学版)》2014年第6期77-80,共4页Journal of Nanjing Forestry University:Natural Sciences Edition
基 金:国家自然科学基金项目(31300471);国家高技术研究发展计划(2012AA102002-4);江苏高校优势学科建设工程资助项目(PAPD)
摘 要:针对田间或苗圃植物背景的复杂性,为准确从采集的样本图片中分割出树苗叶片,提出了一种基于直觉模糊集的阔叶树苗叶边缘检测算法。首先采用3×3模板分别对RGB颜色空间中的R、G、B灰度图进行x方向、y方向、45°以及135°方向模糊聚类,然后采用最大类间方差法提取模糊聚类图像的阈值,最后根据阈值检测出阔叶苗叶边缘。对经典的基于微分算子的边缘检测法与该研究提出的边缘检测算法进行了分析比较,结果证明该研究提出的算法能较好地检测出阔叶树苗叶边缘,特别对于重叠区域叶片也能检测出边缘。In this paper,a novel edge detection method based on intuitionistic fuzzy set( IFS) for hardwood seedlings leaves is proposed to accurately segment the leaves from images in complex background. Firstly,3 × 3 templates of the xdirection,y direction,the direction of 45° and 135° were utilized to cluster the R,G,and B gray image respectively.Secondly,the maximum variance method was proposed to extract the fuzzy clustering image threshold. Finally,image edge was detected according to the threshold,where a clear boundary was obtained. Proposed method performed better than classical edge detection methods of differential operator. Experiments for kinds of hardwood seedlings were carried out,and the results indicated that the proposed method was effectiveness to detect the leaf edge,especially for the overlap region.
分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249