检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]苏州科技学院土木工程学院,江苏苏州215011
出 处:《振动与冲击》2014年第23期42-46,共5页Journal of Vibration and Shock
基 金:国家科技支撑计划课题(2012BAJ11B01);江苏省自然科学基金项目(BK20141180);苏州科技学院科研基金项目(XKZ201304)
摘 要:通过对结构响应进行连续小波变换将多自由度模态参数识别转化为多个单自由度模态参数识别。建立小波骨架理论公式与由结构输出信号计算而得的小波骨架之差为目标函数的优化问题,通过搜索包含于小波骨架理论公式中的模态参数的取值而使目标值最小,从而将优化问题转化为模态参数识别问题。量子粒子群算法是一种基于群体智能理论的优化算法。将量子粒子群算法应用到上述方法中一次性识别出结构的频率、阻尼和振型。最后采用数值模拟的简支梁对该方法进行有效性验证。结果表明,量子粒子群算法结合连续小波变换可以有效地识别环境激励下的结构模态参数。Multi-DOF structural modal parameter identification was converted into several single-DOF structural modal parameter identifications by treating structural output data with continuous wavelet transformation. An optimization with an objective function of the difference between theoretical formula of wavelet skeleton and the wavelet skeleton calculated from structural output data was performed. The minimum objective value was gained through searching reasonable modal parameters included in the theoretical formula of wavelet skeleton. And the optimization was turned into structural modal parameter identification. Quantum-behaved particle swarm optimization, as a swarm intelligence optimization algorithm,was used in the structural modal parameter identification above to identify the structural modal parameters( frequencies,damp ratios and modal shapes) simulataneously under ambient excitation. Finally,the modal parameter identification method based on quantum-behaved particle swarm optimization combined with continuous wavelet transformation presented herein was verified with a numerical simulation of a simply-supported beam. The results showed that the methodology herein can effectively be used to identify structural modal parameters under ambient excitation.
关 键 词:连续小波变换 量子粒子群算法 环境激励 结构模态参数识别 智能优化算法
分 类 号:U441[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3