检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院光电技术研究所,四川成都610209 [2]中国科学院大学,北京100149
出 处:《光学精密工程》2014年第12期3401-3408,共8页Optics and Precision Engineering
基 金:国家自然科学基金资助项目(No.11178004)
摘 要:传统的基于梯度的图像清晰度评价函数(调焦函数)对噪声敏感,在实际应用中易引入过多的非边缘信息,影响系统的稳定性。本文基于光学成像系统离焦模型分析了系统离焦对图像清晰度的影响,并提出了一种改进的图像清晰度评价方法。该方法利用最大灰度差提取细节信息来评价图像清晰度;引入阈值区分边缘点和非边缘点来减小图像平坦区域对评价函数灵敏度的影响,同时有效抑制噪声的干扰。进行了仿真实验和实际测试并与传统的清晰度评价函数进行了比较。结果显示,提出的方法具有更好的灵敏度和抗噪性能,能够准确而稳定地评价离焦模糊图像的清晰度,可用于实际光学系统的自动调焦。Traditional gradient based image sharpness evaluation functions are sensitive to noise,which is easy to introduce more non-edge information and shows poor stability in practical applications.This paper analyzes the effect of the defocus of an optical imaging system on image sharpness based on the defocused model and proposes a improved sharpness evaluation method.The method uses the maximum gradient as the criterion of image sharpness.Then,it introduces the optimal threshold to distinguish the edge points and non-edge points to reduce the impact of the gradient of flat area and the noise in the image on evaluation results and to suppress the noise interference.The simulation experiments and actual test are performed and obtained results are compared with that of different traditional methods.It is verified that the improved method has better sensitivity and noise immunity,which is able to evaluate the sharpness of defocused image accurately and is suitable for auto-focusing in actual opticalimaging systems.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229