基于干扰协方差矩阵重构的恒定束宽鲁棒自适应波束形成  被引量:6

Frequency-invariant robust adaptive beamforming based on interference covariance matrix reconstruction

在线阅读下载全文

作  者:范展 梁国龙 

机构地区:[1]哈尔滨工程大学水声技术重点实验室,哈尔滨150001

出  处:《声学学报》2015年第1期104-109,共6页Acta Acustica

基  金:国家自然科学基金(61201411;51279043);中央高校基本科研业务费专项基金(HEUCF120502);水声技术重点实验室基金(9140C200203110C2001)资助

摘  要:针对宽带波束形成中的恒定束宽波束响应优化设计问题与鲁棒性问题展开研究。首先,提出一种基于相位补偿的恒定束宽全局优化设计方法,通过对阵列流形向量进行相位补偿来设计恒定束宽波束,与现有的一些方法相比,该方法不仅能获得全局最优解,而且物理实现简单。同时,还提出一种基于协方差矩阵重构的鲁棒自适应宽带波束形成算法。该算法采用Capon估计器估计样本数据的空间一频率谱密度函数,然后对期望信号波达方向之外的角度区间进行积分来重构干扰加噪声协方差矩阵,最后利用重构的协方差矩阵设计自适应波束形成器权系数。该波束形成器设计问题被表述成凸优化问题求解。仿真结果表明,在整个输入信噪比范围内,该算法几乎都能获得接近理想值的输出信干噪比。Consider the problems of frequency-invariant beampattern optimization and robustness in broadband beamforming. Firstly, a global optimization algorithm, which is based on phase compensation of the array manifolds, is used to construct the frequeney-invariant beampattern. Compared to some other methods presented recently, the proposed algorithm is not only available to get the global optimal solution, but also simple for physical realization. Meanwhile, a robust adaptive broadband beamforming algorithm is also derived by reconstructing the covariance matrix. The essence of the proposed algorithm is to estimate the space-frequency spectrum using Capon spectral estimator firstly, then in- tegrate over a region separated from the desired signal direction to reconstruct the interference-plus-noise covariance matrix, and finally calculate the adaptive beamformer weights with the reconstructed matrix. The design of beamformer is reformulated as a convex optimization problem. Simulation results show that the performance of the proposed algorithm is almost always close to the optimal value across a wide range of signal to noise ratios.

关 键 词:自适应波束形成器 协方差矩阵 恒定束宽 矩阵重构 鲁棒性 干扰 波束形成算法 宽带波束形成 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象