基于测地线距离统计量的多工况间歇过程监测  被引量:2

Multimode batch process monitoring based on geodesic distance statistic

在线阅读下载全文

作  者:郭小萍[1] 李婷[1] 李元[1] 

机构地区:[1]沈阳化工大学信息工程学院,辽宁沈阳110142

出  处:《化工学报》2015年第1期291-298,共8页CIESC Journal

基  金:国家自然科学基金重点项目(61034006);国家自然科学基金面上项目(60774070;61174119);辽宁省教育厅科学研究一般项目(L2013155);辽宁省博士启动基金项目(20131089)~~

摘  要:针对间歇过程数据具有非线性和多工况的特点,提出一种基于测地线距离统计量(geodesic distance statistic,GDS)的监测方法。首先,对多工况间歇过程数据按批次方向展开及标准化,利用主元分析(principal component analysis,PCA)方法进行降维;然后,在降维空间获得赋权邻接矩阵,提出采用改进的Dijkstra(improved Dijkstra,IDijkstra)算法使Dijkstra算法更易于实现,计算各批次之间的测地线距离,用以表征非线性多工况数据之间的实际最短距离,更好地体现批次数据之间的局部近邻关系。通过构造测地线距离α次方统计量Dα进行过程监测,与欧氏距离平方和D2相比将减小边缘训练数据距离的偏离程度。最后,通过在数值仿真和工业仿真实例中的应用,验证所提算法的有效性。Process monitoring based on Geodesic Distance Statistic(GDS) is proposed in this article for that fault monitoring method based on Euclidean distance of k Nearest Neighbors (kNN) could not fully reflect the complex characteristics between data with multiple conditions. To start, the batch process data is expanded and standardized by the batch direction. Principal Component Analysis (PCA) is utilized for data dimensionality reduction. Next, Get empowered adjacency matrix in the reduced space. Improved Dijkstra (IDijkstra) algorithm is proposed based on Dijkstra algorithm for easier implement. It can better characterize the actual shortest distance of the nonlinear data and reflect the local neighborhood relations between batch data. Meanwhile, statistics Dαbased onαpower of Geodesic distance which could reduce the deviation of distance from the edge of the training data is structured for fault monitoring compared with D2 based on quadratic sum of Euclidean distance. Finally, the effectiveness of the proposed algorithm is verified by applying it in numerical simulation and industry examples.

关 键 词:多工况 非线性 间歇过程 测地线距离 算法 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象