基于蚁群算法的玉米植株热红外图像边缘检测  被引量:12

Thermal Infrared Image Edge Detection Method Based on Ant Colony Algorithm for Corn Plant

在线阅读下载全文

作  者:陈浩[1,2] 方勇[1] 朱大洲[2] 王成[2] 陈子龙[2] 

机构地区:[1]西北农林科技大学信息工程学院,陕西杨凌712100 [2]北京农业智能装备技术研究中心,北京100097

出  处:《农机化研究》2015年第6期49-52,共4页Journal of Agricultural Mechanization Research

基  金:北京市自然科学基金项目(4142019);北京市科技新星计划项目(Z111105054511051)

摘  要:针对热红外图像目标与背景区分不明显、效果模糊,以及传统的Roberts、Sobel、Canny等边缘检测方法难以取得理想检测效果的特点,以玉米植株为测试对象,首次将蚁群优化算法应用于热红外图像边缘检测。该算法由初始化过程开始,进行N步迭代构造信息素矩阵,然后执行信息素过更新过程,最后图像边缘由决策过程给出。仿真实验结果表明,该算法与传统边缘检测算法相比,能够较好地得到边缘检测结果,可为农作物热红外图像处理提供一种新的方法。The thermal infrared image often has the drawbacks of inconspicuous distinction between target and background, fuzzy effect. The traditional edge detection methods, such as Robert method, Sobel method, Canny method, are difficult to obtain satisfactory results. In order to solve the problems, the corn plant as the test object, the ant colony optimization algorithm is applied for the first time thermal infrared image edge detection. The algorithm begins by initializing process, carried out N-step iterative constructing pheromone matrix, and then performing the pheromone update process, finally, image edge given by the decision making process. The simulation and experimental results show that this method can accurately detect the target edge and it is better than the traditional edge detection. Provided a new method for crop thermal infrared image processing.

关 键 词:蚁群优化算法 玉米植株 热红外图像 边缘检测 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] S126[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象