基于GPU的高光谱遥感主成分分析并行优化  被引量:2

Parallel Optimization for Principal Component Analysis of Hyperspectral Remote Sensing Based on GPU

在线阅读下载全文

作  者:柳家福 李欢[2] 贺金平[2] 刘天石[3] 王启聪[1] 吴泽彬[1,4] 

机构地区:[1]南京理工大学计算机科学与工程学院,南京210094 [2]北京空间机电研究所,北京100094 [3]北京航空航天大学电子信息工程学院,北京100191 [4]南京理工大学连云港研究院,连云港222006

出  处:《航天返回与遥感》2014年第6期99-106,共8页Spacecraft Recovery & Remote Sensing

基  金:国家自然科学基金(61101194);江苏省自然科学基金(BK2011701);江苏省"六大人才高峰"项目(WLW-011);高等学校博士学科点专项科研基金资助项目(20113219120024);CAST创新基金项目(CAST201227);中国地质调查局工作项目(1212011120227)

摘  要:主成分分析(principal component analysis,PCA)是高光谱遥感图像特征提取的重要方法。为了在保证精度的同时,提高高光谱遥感PCA算法的计算效率,文章提出一种基于图形处理器(graphic processing unit,GPU)+中央处理器(central processing unit,CPU)异构系统的PCA并行优化方法。该方法利用GPU的并行计算能力实现PCA中复杂的协方差矩阵计算与维数缩减过程,优化了像元去均值的计算流程;解决了GPU内核计算像元累加和非合并访问问题;利用共享内存机制,提高了访存效率。此外,该方法采用改进的Jacobi快速迭代法在CPU中进行特征分解,保证了算法的精度。实验结果表明,该方法在保证精度的同时能够有效提高计算效率,在Quadro600平台上的加速比达到141倍,满足了高光谱遥感图像实时应用的需求。Principal component analysis (PCA) is an important method for feature extraction of hyperspectral remote sensing image. In order to improve the computational efficiency of PCA, a novel parallel optimization method of PCA is proposed based on GPU+CPU heterogeneous platform. It takes the advantage of GPU’s parallel computing ability to implement the complex calculation of covariance matrix and dimensionality reduction process of PCA. And it also optimizes the decentralized flow of image data, solves the non-consolidated access of summation on GPU and uses the shared memory mechanisms to improve the efficiency of memory access. Furthermore, the modified Jacobi iterative solution is proposed for eigen-decomposition on CPU to ensure the accuracy of the algorithm. Experimental results show the efficiency of proposed method is achieved, and the maximum speedup is up to 141X at Quadro 600 platform, which can meet the requirement of real-time hyper spectral remote sensing image applications.

关 键 词:高光谱遥感 主成分分析方法 处理器异构系统 并行优化 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象