检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王靖[1,2] 潘振宽[2] 郑永果[1] 丁洁玉[2]
机构地区:[1]山东科技大学信息科学与工程学院,山东青岛266590 [2]青岛大学信息工程学院,山东青岛266071
出 处:《计算机应用与软件》2015年第1期206-210,共5页Computer Applications and Software
基 金:国家自然科学基金项目(61170106)
摘 要:Potts模型是一种通用的多相图像分割的变分模型,其极值问题需要迭代求解一系列偏微分方程。针对其求解过程计算效率较低的问题,提出一种基于对偶方法的快速算法。采用离散二值标记函数作为特征函数,利用Lagrange乘子法把对特征函数的约束加入能量泛函,然后引入对偶变量改写模型中的长度项,利用KKT的条件得到特征函数的二值解以及对偶变量的简单迭代格式。通过数值实验将该方法与梯度降方法、对偶方法和Split Bregman方法进行比较。实验结果表明,该算法的计算效率和分割准确性都高于其他三种方法。Potts model is a general variational model for multiphase image segmentation. Its extremum solution is achieved by solving a series of partial differential equations with iteration, which is of low computation efficiency. To address this problem, we propose a dual method-based fast algorithm. Using several discrete binary labelling functions as characteristic functions, the algorithm puts the constraint of characteristic functions into the energy function with Lagrange multiplier method. Then some dual variables are introduced to reformulate the length item of the model. Finally the binary results of characteristic functions and the simple iterative format of dual variables can be obtained by using KKT (Karush-Kuhn-Tucker) condition. The proposed method is compared with the gradient descent method, dual method and Split Bregman method according to some numerical experiments. Experimental results show that the improved dual method has higher performance in computational efficiency and segmentation accuracy than the other three methods.
关 键 词:多相图像分割 POTTS模型 变分方法 对偶方法
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.104.28