检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河池学院数学与统计学院,广西宜州546300 [2]太原师范学院数学系,太原030012
出 处:《数学物理学报(A辑)》2014年第6期1408-1414,共7页Acta Mathematica Scientia
基 金:国家自然科学基金(11161018);广西自然科学基金项目(2012GXNSFAA053009)资助
摘 要:该文在文献[2]的基础上,研究了一类新的乘积形式的离散不等式.把参考文献中不等式右端第一个因子中包含的未知函数u推广成未知函数的幂函数u^2,运用变量替换技巧、放大技巧、微分中值定理、反函数技巧、常量与变量的辩证关系,给出了不等式中未知函数的估计.最后,阐述了所得的结果可以用来给出乘积形式差分方程解的绝对值的上界估计.In this paper, we study a class of new discrete inequality of product form on the basis of the literature [2]. Our discrete inequality contains compound function of power function and unknown function in sum, but the discrete inequalities in reference only contains the linear factor of unknown function. The estimation of unknown function in our inequality are given by technique of change of variable, amplification method, difference and summation, inverse function, and the dialectical relationship between constants and variables. Finally, we expound that we can give estimation of solutions of a class of difference equation of product form by our result.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.107.172