检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林西芹[1]
出 处:《数学理论与应用》2014年第4期12-40,共29页Mathematical Theory and Applications
基 金:Supported by SDIBT for youth No.2013QN055
摘 要:设G是一个图.G的顶点u和v的距离是u和v之间最短路的长度.Wiener指数是G中所有无序顶点对之间距离之和,而Hyper-Wiener指数定义为WW(G)=?∑u,v∈V(G)d(u,v)+?∑u,v∈V(G)d2(u,v),式中的和取遍G的所有顶点对.本文总结了图的Hyper-Wiener指数的最近结论.Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G,whereas the Hyper - Wiener index WW(G) is defined as WW(G)=1/2∑u,v∈V(G)d(u,v)+1/2∑u,v∈V(G)d2(u,v),with the summation going over all pairs of vertices in G. In this paper, we survey recent results on the Hyper - Wiener index of graphs.
关 键 词:WIENER指数 Hyper-Wiener 指数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4