一种改进的粒子群多目标优化算法研究  被引量:5

Research on an Improved Multi-objective Optimization Algorithm of Particle Swarm

在线阅读下载全文

作  者:刘慧慧[1] 

机构地区:[1]南京邮电大学自动化学院,江苏南京210046

出  处:《计算机技术与发展》2015年第1期87-90,95,共5页Computer Technology and Development

基  金:国家自然科学基金资助项目(61070234)

摘  要:为了解决多目标优化过程中各个解之间存在的资源争夺、冲突,算法由于趋同性而带来的早熟无法收敛等缺点,文中提出了一种多子种群协同优化粒子群算法。算法分别采用不同的种群优化不同的目标,并且在算法中引入外部档案和精英学习策略,使得算法能够得到更多的外部档案的解供选择,精英学习策略是为了使算法的分布性和收敛性更好。最后将算法应用到多目标测试函数中,通过实验验证了改进后的算法的收敛性和分布性都比经典多目标算法NSGAII要好。To solve the problem that resource contention and conflict between the various solutions in multi-objective optimization pro-cessing,and can't be convergence duo to the precocious brought by convergence,introduce a multi-sub-population co-evolution mecha-nism to overcome these shortcomings. The algorithm has adopted different populations to optimize different targets. Meanwhile,it intro-duces an external archive and elite learning strategies,in this way it can obtain more solutions of external archive to choose. Elite learning strategies makes the algorithm has a better distribution and convergence. Finally,the algorithm is applied into the multi-objective test function,the experimental results show that the improved algorithm has a better convergence and distribution than NSGA II.

关 键 词:多目标优化 粒子群算法 多子种群 外部档案 

分 类 号:TP31[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象